

2015/SOM3/CD/WKSP/013

Regulation of Metals in Soils

Submitted by: University of Adelaide

Workshop on Metals Risk Assessment Cebu, Philippines 28-29 August 2015

Sources of Metals in Soils

• Geogenic

- Parent rock weathering, e.g. all metals
- Atmospheric accessions e.g. volcanic activity, e.g., F
- Surface or groundwater irrigation on soil e.g., As

• Anthropogenic

- Mining/smelter emissions (atmosphere and to waters used for irrigation)
- Coal combustion
- Chemical and electronic industry waste
- Waste disposal
- Agricultural inputs
- Transport
- Urban wastes

Protecting Soils from Metal/ Metalloid Contamination

We need to control soil contamination for several reasons

- Metals/metalloid do not degrade
- Most metals/metalloids are not easily removed from soils
- Soils are the basis for food production
- Soils are the basis of the wildlife food chain
- Most potable water passes through soil before storage

Protecting Soils from Metal/ Metalloid Contamination

Two scenarios to consider:

- 1. Assessing presence of contamination and ecological/human risk and the need for remediation (historical contamination)
- Predicting accumulation in soils and assessing needs for controls on emissions to soils (preventing future risk)

Both these require the development of appropriate generic or site-specific ecological soil quality standards

Protecting Soils from Metal/ Metalloid Contamination: Major Issues

- Need to consider background
- Need to consider "soil effect" on bioavailability (normalisation)
- Need to consider leaching/ageing factor for laboratory toxicity data
- Need to consider multiple biological species

Soil Bioavailability					
Species/soil process	X parameter(s)	Reference Lock and Janssen, 2001			
<i>E. fetida</i> (eworm)	0.79* log CEC				
<i>F. Candida</i> (collembola)	1.14* log CEC	Lock and Janssen, 2001			
PNR	0.15*pH	Smolders et al., 2003			
SIN	0.34*pH + 0.93	Broos et al., 2007			
T. aestivum (wheat)	0.14 * pH + 0.89*log OC + 1.67	Warne et al., 2008a			
	0.271*pH + 0.702*CEC + 0.477	Warne et al., 2008b			
	0.12*pH +0.89* log CEC + 1.1	Smolders et al., 2003			

For Data-P		112		
Take the lowest	Toxicity data available			
toxicity value and divide it by an assessment factor (AF)	No. species	No. taxonomic /nutrient	AF	
 The limit is set using the most sensitive species in the most sensitive 	< 3 species	gps NAª	500	
soil	≥ 3 species	1	100	
 In general, this 		2	50	
approach sets very low ecotoxicity threshold values	< 5 species	3	10	
	Field or model ecosystem data		10	

Protecting Soils from Metal/Metalloid Contamination: Other Issues

- Biomagnification (for some elements)
- Choice of endpoints (relevance)
- Data quality screening criteria
- Choice of SSD model
- Level of protection used (HCx, AFs)
- Land use multifunctionality
- Mixtures and mixture models

 ACLs for fresh zinc contamination (mg/kg) in residential, urban and rural parkland land uses

				CEC			
рН		5	10	20	30	40	60
4	27	44	72	96	118	157	27
5	51	83	135	180	220	290	51
6	95	155	252	335	410	545	95
7	178	290	470	625	765	1020	178
7.5	245	395	645	855	1045	1390	245
Soil Quality Standard = Background + Added Contaminant Limit							

Different Sources of Contaminants at Contaminated Sites Increase Complexity

- At contaminated sites some contaminant sources may be highly soluble e.g. galvanised runoff, plating effluents, etc.
- Others are highly insoluble e.g. vitreous slags, pure metallic waste (Pb shot), etc.
- Total concentrations treat these sources similarly
- Modelling to predict dissolution is complex
- Selective extraction offers a simple screening tool prior to more detailed risk assessment

Partial Extrac (standard mo		(DIN • 0.01A	NH₄NO₃ 19730) M NaNO₃ M CaCl₂
INTERNATIONAL STANDARD	ISO 19730	TECHNICAL SPECIFICATION	ISO/TS 21268-1
	First edition 2008-12-01		First edition 2007-07-15
Soil quality — Extraction of t elements from soil using am nitrate solution		Soil quality — Leaching pr subsequent chemical and ecotoxicological testing of materials —	
Qualité du sol — Extraction des éléments traces solution de nitrate d'ammonium	du sol à l'aide d'une	Part 1: Batch test using a liquid to of 2 I/kg dry matter	solid ratio
		Qualité du sol — Modes opératoires de lixivia chimiques et écotoxicologiques ultérieura des sol — Partie 1: Essai en bâchée avec un rapport liqu matière sèche	sols et matériaux du

